Probabilistic Graphical Models

Lecture 6

Markov Random Fields

What about

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

Is X_{A} independent of X_{Z} ?

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Is X_{1} independent of X_{24} ?

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

Is X_{A} independent of X_{Z} ? What sort of independent do we have here?

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

Given X_{B} and X_{G}, is X_{A} independent of X_{Z} ?

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

$$
P\left(X_{A} \mid X_{Z}, X_{B}, X_{G}\right)=?
$$

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

$$
P\left(X_{A} \mid X_{Z}, X_{B}, X_{G}\right)=P\left(X_{A} \mid X_{B}, X_{G}\right)
$$

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}:$ student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

$$
P\left(X_{A} \mid X_{B}, X_{C}, X_{D}, \ldots, X_{y}, X_{Z}\right)=?
$$

Influenza Transmission in Class

$X_{A} \in\{0,1\}:$ student ' A ' has flu $X_{B} \in\{0,1\}$: student ' B ' has flu
$X_{z} \in\{0,1\}:$ student ' Z ' has flu

A can only transmit to B, G
H can only transmit to B, G, I, N

$$
P\left(X_{A} \mid X_{B}, X_{C}, X_{D}, \ldots, X_{y}, X_{Z}\right)=P\left(X_{A} \mid X_{B}, X_{G}\right)
$$

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Is X_{1} independent of X_{24} ?

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Given X_{2}, X_{7} and X_{8}, is X_{1} independent of X_{24} ?

Image segmentation

$X_{i} \in\{$ Road, Lanemark, Sky, Vegetation, Guardrail, ...\}
X_{i} : Label of the node at pixel ' i '

Given X_{2}, X_{7} and X_{8}, is X_{1} independent of X_{24} ? Maybe!

Markov Random Field

I = set of all nodes

$$
P\left(X_{i} \mid X_{I \backslash\{i\}}\right)=
$$

Markov Random Field (MRF)

I = set of all nodes

$$
P\left(X_{i} \mid X_{I \backslash\{i\}}\right)=P\left(X_{i} \mid X_{N(i)}\right)
$$

Markov Random Field

I = set of all nodes

$$
P\left(X_{i} \mid X_{I \backslash(i j)}\right)=P\left(X_{i} \mid X_{N(i)}\right)
$$

$N(i)$: neighbours of node i

Gibbs Random Fields (Gibbs Distribution)

$$
\begin{aligned}
& P\left(X_{A^{\prime}} X_{B}, X_{C}, X_{D^{\prime}} \ldots, X_{y}, X_{Z}\right)= \\
& 1 / Z f_{1}\left(X_{A}\right) f_{2}\left(X_{B}\right) \ldots f_{26}\left(X_{Z}\right) \\
& g_{1}\left(X_{A^{\prime}}, X_{B}\right) g_{2}\left(X_{B^{\prime}}, X_{C}\right) g_{3}\left(X_{A^{\prime}} X_{G}\right) \\
& \cdots g_{36}\left(X_{R^{\prime}} X_{Z}\right) g_{37}\left(X_{Y}, X_{Z}\right) \\
& f_{i}(X)>0, g_{j}(X, y)>0 \text { for all } X, y
\end{aligned}
$$

Gibbs random fields

$P\left(X_{A^{\prime}}, X_{B}, X_{C}, X_{D}, \ldots, X_{y}, X_{Z}\right)=$
$1 / Z f_{1}\left(X_{A}\right) f_{2}\left(X_{B}\right) \ldots f_{26}\left(X_{Z}\right)$
$g_{1}\left(X_{A^{\prime}}, X_{B}\right) g_{2}\left(X_{B^{\prime}}, X_{C}\right) g_{3}\left(X_{A^{\prime}} X_{G}\right)$
$\cdots g_{36}\left(X_{R^{\prime}} X_{Z}\right) g_{37}\left(X_{Y}, X_{Z}\right.$
$\mathrm{f}_{\mathrm{Z}}(\mathrm{X})>0, g_{j}(X, y)>0$ for all X, Y
$Z:$ the partition function

Gibbs random fields

$$
\begin{aligned}
& P(A, B, C, D)= f_{1}(A) f(B) f_{3}(C) f_{4}(D) \\
& g_{12} f_{12}(A, B)\left(f_{24}(B, D)\right) \\
&=\frac{g_{12}(A, B) g_{134}(A, C)(B, D)}{g_{13}(A, C) g_{34}(C, D)}
\end{aligned}
$$

Gibbs random fields

Gibbs random fields

$P\left(X_{A}, X_{B}, X_{C}, X_{D}, \ldots, X_{y}, X_{Z}\right)=$
$1 / Z g_{1}\left(X_{A}, X_{B}\right) g_{2}\left(X_{B}, X_{C}\right)$ $g_{3}\left(X_{A}, X_{G}\right) \ldots g_{36}\left(X_{R^{\prime}} X_{Z}\right) g_{37}\left(X_{y}\right.$, X_{z})
$g_{j}(x, y)>0$ for all x, y
Z: the partition function

what is Z ?

Generalized Gibbs Distribution

Generalized Gibbs Distribution

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{2} \underbrace{\prod_{i=1}^{n} f_{i}\left(x_{i}\right)}_{\tilde{P}\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \prod_{(i, j) \in \varepsilon} f_{i j}\left(x_{i}, x_{j}\right) \\
& \text { (T) }
\end{aligned}
$$

Generalized Gibbs Distribution

$$
\begin{aligned}
& \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1 \\
& \quad \Rightarrow \sum_{x_{1}, x_{2}, \ldots x_{n}} \sum^{2}\left(\frac{1}{2} \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \prod_{(i, j) \in \varepsilon} f_{i j}\left(x_{i}, x_{j}\right)=1\right. \\
& Z=\left(\sum_{x_{1} x_{2}-x_{n}} \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \prod_{(i, j) \in \varepsilon} f_{i j}\left(x_{i}, x_{j}\right)\right. \\
& \quad Z=\sum_{x_{i} x_{2} x_{n}} \widetilde{P}(x)
\end{aligned}
$$

Generalized Gibbs Distribution

$$
\begin{aligned}
& X=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \\
& P p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P(X) \\
& \widetilde{P}(X)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right) \prod_{(i, j) \in \varepsilon} f_{i j}\left(x_{i}, x_{j}\right) \\
& P(x)=\frac{1}{2} \widetilde{P}(x) \\
& z=\sum_{x} \widetilde{P}(x)
\end{aligned}
$$

Generalized Gibbs Distribution

$$
\begin{gathered}
P(A, B, C, D, E, F, G)=f(A) f_{2}(B) f_{3}(C) \ldots f(G) \\
f_{B}(A, C) f_{1}(A, B) f_{23}(B, C) \ldots f(G F, G) \\
f\left(E, F, G \mid f_{n 3}(A, B, C) f(D, F, E) f_{1}(E, G, D) f(E, D, G)\right. \\
f_{12}(D, E, G, F)
\end{gathered}
$$

Generalized Gibbs Distribution

(X, Y) appear in a factor \Rightarrow there is an edge between X and Y in graph

Cliques

Fully connected subgraphs

Cliques

Clique
1-cliques: nodes
2-Cliques: edges

3-Cliques: $(A, B, E),(E, F, B),(C, D, G),(D, C, H)$
H-Cliques: (D, C, H, G)
5-Cliques: None

Cliques

```
學囯學 Cambridge
Navistionary
clique
noun [ C, + sing/pl verb ] = disapproving
a small group of people who spend their time together and do not welcome other people into that group：
```


Cliques

maximal cliques: cliques not contined in larger cliques
(A,B,E), (B,F,E), (B,C), (F,G), (C,D,G,H)

Two random fields

Markov random field: $P\left(X_{i} \mid X_{I \backslash(i)}\right)=P\left(X_{i} \mid X_{N(i)}\right)$

Generalized Gibbs Distribution
Generalized Gibbs Distribution

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
G=(V, \varepsilon)
$$

point distribution
Undired Graph
$P\left(X_{1}-X_{n}\right)$ can be written as product of factors. s.t. each factor is a function of a clique of G.

Generalized Gibbs Distribution

$$
\begin{aligned}
P_{1}(A, B, C, D)= & f(A, C) f(A, D) \\
& f(B, D) f(A, B) \\
P_{2}(A, B, C, D)= & f(A, C) f(A, P, B)
\end{aligned}
$$

P_{1}, P_{2} are both Lib, distributions corresponding to G.

Hammersley-Clifford theorem

Assume that $P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)>0$ for all assignments to $X_{1}, X_{2}, \ldots, X_{n^{\prime}}$ then

- P is a Markov Random Fields over an unidrected graph G, if and only if it is a Gibbs distribution (factorizes over the cliques of the graph)

Examples

$$
\begin{aligned}
& P\left(X_{A^{\prime}} X_{B^{\prime}}, X_{C}, X_{D^{\prime}} \ldots, X_{y}, X_{Z}\right)= \\
& 1 / Z f_{1}\left(X_{A}\right) f_{2}\left(X_{B}\right) \ldots f_{26}\left(X_{Z}\right) \\
& g_{1}\left(X_{A}, X_{B}\right) g_{2}\left(X_{B}, X_{C}\right) g_{3}\left(X_{A^{\prime}} X_{G}\right) \\
& \ldots g_{36}\left(X_{R^{\prime}}, X_{Z}\right) g_{37}\left(X_{y}, X_{Z}\right)
\end{aligned}
$$

Examples

Markov Property

1. Pairwise Markov Property
2. Local Markov Property $P\left(X_{i} \mid X_{I \backslash(i\}}\right)=P\left(X_{i} \mid X_{N(i)}\right)$
3. Global Markov Property

All are true for Gibbs random fields corresponding to the cliques of the graph.
$\Rightarrow P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)>0 \quad 1,2,3$ are equivalent

Pairwise Markov Property
pairwise markor properly
$0 \bigcirc$
(x) (2)
(F

$$
G=(D, \varepsilon)
$$

$$
(X, Y) \notin \varepsilon^{0}
$$

X, Y are independent Given all other nodes

$$
X \perp Y \mid \nu \backslash\{x, y\}
$$

Global Markov Property

Global Markor Property
$G=(V, E)$
if $S \subseteq V$ separate
 nodes $X, Y \Rightarrow X \perp Y \mid S$
X is conditionally independent of Y Given

$$
A \perp I \mid C, G, H
$$

Example

