Probabilistic Graphical Models

Lecture 6



What about ...




Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu
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Is X, independent of X.?
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Image segmentation

X. € {Road, Lanemark, Sky,
Vegetation, Guardrail, ...}

X.: Label of the node at pixel ‘i’
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Image segmentation

X. € {Road, Lanemark, Sky,
Vegetation, Guardrail, ...}

X.: Label of the node at pixel ‘i’

Is X, independent of X,,?
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu

X, € {0,1}: student ‘B’ has flu A-B-C D-E-F
XZ.E {0,1}: student 'Z' has flu (|3 _ |I_| _ |I JI _ J( ] J
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Is X, independent of X_? What sort of independent do we have here?



Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu
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H can only transmit to B,G,I N

Given X, and X, is X, independent of X,?
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu
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H can only transmit to B,G,I N

P(X, | X, Xg, X5 )= 2
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu
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POX, | X, Xy, X2 )= P(X, | X5, X, )
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu
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Influenza Transmission in Class

X, € {0,1}: student A’ has flu
X, € {0,1}: student ‘B’ has flu

X, € {0,1}: student 'Z" has flu

A can only transmit to B,G
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Image segmentation

X. € {Road, Lanemark, Sky,
Vegetation, Guardrail, ...}

X.: Label of the node at pixel ‘i’

Is X, independent of X,,?
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Image segmentation

X. € {Road, Lanemark, Sky,
Vegetation, Guardrail, ...}

X.: Label of the node at pixel ‘i’

Given X,, X, and X, is X
independent of X,,?
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Image segmentation

X. € {Road, Lanemark, Sky,
Vegetation, Guardrail, ...}

X.: Label of the node at pixel ‘i’

Given X,, X, and X, is X,
independent of X,,? Maybe!
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Markov Random Field

I = set of all nodes

POX | Xpyy) = |><|><|><|><|><| ‘
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Markov Random Field (MRF)

I = set of all nodes

POX; | Xpy) = POS, 1 X0) | >< | ><| >< | ><| >< .
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Markov Random Field

I = set of all nodes
P(X; | Xny) = PCX | X\

N(i): neighbours of node i
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Gibbs Random Fields (6ibbs Distribution)

P(X ., Xg, X, Xy, ot Xy, X)) =
1/Z £,(X,) £,(X,) - £,4(X,)

gl(XAl XB) 92(XBI XC) 93(XAI XG)
- 936(Xps X2) 937Xy, X7)

fi(x)>0, g,(x,y) >0 for all xy



Gibbs random fields

P(X ., Xg, X, Xy, ot Xy, X)) =
1/Z £,(X,) £,(X,) - £,4(X,)

gl(XAl XB) 92(XBI XC) 93(XAI XG)
- 936(Xps X2) 937Xy, X7)

fi(x)>0, g,(x,y) >0 for all xy

Z: the partition function
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Gibbs random fields
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Gibbs random fields

P(X,, Xg, Xpo X5, s Xy, X)) =

1/Z g,(X,. X3) 9,(X;, X,)

93(Xar Xg) - 936(Xps X7) 937(Xy,
X)

gJ.(x,y) >0 for all xy

Z: the partition function
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Gibbs random fields

P(X,, Xg, Xpo X5, s Xy, X)) =

1/Z g,(X,., Xz) 9,(X;, X,)

93(Xar Xg) - 936(Xps X7) 937(Xy,
X)

gj(x,y) >0 for all xy
Z: the partition function

what is Z?
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Generalized Gibbs Distribution

P(X,, Xg, Xpo X5, s Xy, X)) =

1/Z £,(X,) £,(Xp) ... f,o(X,) 'IA\ . ||3 - (|3
gl(XAl XB) 92(XBI XC) 93(XAI XG) G B H B I
- 936(Xg, X2) 95(Xy, X2) \ | |
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what is Z?



Generalized Gibbs Distribution




Generalized Gibbs Distribution

P
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Generalized Gibbs Distribution
X - (X \ 7 X; ? X‘)




Generalized Gibbs Distribution

FOARD e Eis, G) = £(x) £(8) ). - £(c)

f}(_/},g) {Z(A,B) ()(Bc) N 2(2F6)
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Generalized Gibbs Distribution

(X.Y) appear in a factor => there is an edge between X and Y in graph



Cliques

Fully connected subgraphs




Cliques
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Cliques

@7 Cambridge
™" Dictionary
clique

noun [C, + sing/pl verb ] disapproving

a small group of people who spend their time together and do not welcome other
people into that group:




Cliques

maximal cliques: cliques not contined in
larger cliques

(A.BE), (B,FE), (BC), (F6) (CDGH)




Two random fields

Markov random field:
P(X; | X)) = PX | XN(i))

Gibbs random field:
P(X,. X5, Xz Xy 0 Xy, X)) =

1/Z g,(X,. Xz) 9,(X;, X,)
95(X 4, Xg) - 934(Xy, X2) 95,(X,
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Generalized Gibbs Distribution
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Generalized Gibbs Distribution
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Hammersley-Clifford theorem

Assume that P(X,, X,, X;, ..., X ) > O for all assignments to X, X, ..., X
then

nl

e P is a Markov Random Fields over an unidrected graph G, if and
only if it is a Gibbs distribution (factorizes over the cliques of the

graph)



Examples

POX,,, Xy, Xo Xo, o Xy, X)) =
1/Z £,(X,) F,(X,) - f,i(X,)

91(XAI XB) 92(XBI XC) 93(XAI XG)
- 936(Xps X2) 937Xy, X7)
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Examples
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Markov Property

1. Pairwise Markov Property
2. Local Markov Property P(X. | XI\{i}) = P(X: | XN(E))
3. Global Markov Property

All are true for Gibbs random fields corresponding to the cliques of the
graph.

=>P(X,, X,, X5, .., X )>0 12,3 are equivalent



Pairwise Markov Property

6=(V,€)

X/Y are \.v\cxepenclen" &Sipen
all other yode




Global Markov Property
bl Makor  Property
&= (V, §)

- sall
hocke s X,\’

ALE|C,c,H



Example



